NUCLEAR POWER TRENDS: CHALLENGES TO EXPANSION

The need for electricity

3

General barriers to nuclear power development

Public opinion

Waste management

Financing

Governance

In-experienced newcomers

Insufficient technical and human resource development support

The national policy and energy planning; tools for goals achievement

- National goals are promoted in various ways.
- Strong development of renewable energy sources, no carboninfluence, presented as key to prevent climate change.
- The nuclear option, with no carbon footprint, it is not recognized in climate prevention; nor as a renewable or "green" energy source.
- Subsidies are channeled to solar and wind, the classic renewables:
 - Subsidies reached \$121 billion in 2013, expected to reach nearly \$230 billion in 2030*
 - Nuclear power run the risk of being shut-down prematurely due to financial reasons. Example: Sweden.
- Craddle-to-grave management; principle not applied across the energy sector, compare nuclear, coal, oil, renewables(?).
- Can nuclear power be regarded as renewal, or green?

Public opinion

Perceptions

- High radiation risk; the fear of new accidents
- Terrorists may target nuclear power plants
- The nuclear technology is old, ineffective and being phased out.
- The nuclear industry is run by technocrats...
- Renewables need support to enable the sustainable development

Public opinion may/could change, e.g.;

- After accidents, compare reactions in Germany, Switzerland and Belgium
- As a result of confidence building, compare the number of newcomers "before" Fukushima, but after Chernobyl.
- Price stability, at what level..?

Radioactive waste management

General:

- No final depository for LEU spent fuel in operation equals(?) no acceptable solution exists.
- Radioactive waste depositaries are national responsibilities; regional solutions are not pursued.
- Geological depositaries become "plutonium-mines", and a future radioactive threat.
- Any new technology in sight?

Countries have chosen to:

- Not select a final solution; the USA, Japan, Canada or UK.
- The deep geological repository; Sweden (application 2011) and Finland (application 2012). Operation earliest 2022 (Finland).
- The reactor fuel is returned to the supplier after use. Option selected by newcomers (as offered by the Russian Federation).

- High upfront capital costs, major investments over long period of time, market risks.
- Long lead times (planning, construction, etc), to revenue.
- Uncertainties in national policy, insufficient planning basis.
- Emerging resources in developing countries changes the picture.

New financing strategies:

- Build, own, operate; No up-front major cost, payment of energy produced and consumed. Model for new countries.
- Industrial investment, Private industry investment to secure supply of electrical power. Surplus sold in the market. Example; Finland.
- Privatization of the energy market opens for investments by providers; example the United Kingdom.

- Only excellence in safety and security management is acceptable.
- The operator has the ultimate responsibility for safety and security.
- A global system of commitments, international standards and interaction make up a framework for safety, security and peaceful uses.
- Deficiencies, non-compliance, become associated with the entire industry, not only individual operators.

Nuclear Safety

- Sufficient legal basis
- Comprehensive IAEA Nuclear Safety Standards.
- IAEA assessments voluntary;
 (OSART), WANO, INPO.

Nuclear Security

- Insufficient legal basis
- Not yet comprehensive Nuclear Security Guidance.
- IAEA assessment; voluntary;
 IPPAS, no industry-driven review.
- The legal basis for nuclear security has serious gaps.
- Separation in safety and security is outdated.
- Assessment, review and the communication of results is insufficient for confidence building.

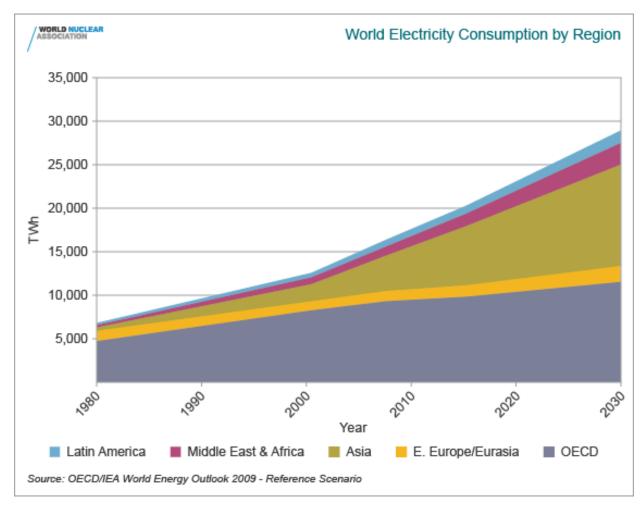
Supporting structure

Nuclear Safety

- Technical Support Organizations available in the nuclear safety field.
- Industrial establishments for regulatory training requirements (e.g. INPO).

Nuclear Security

- Centers of Excellence/Nuclear Security Support Centers being established within the nuclear security field.
- Ad hoc structure, with IAEA as the major training provider.
- Wider range of coordination requirement; for the Design Basis Threat establishment and for response planning.


Nuclear safety versus nuclear security; outdated separation.

Is the supporting structure adequate for newcomer countries?

 Regional centers, technology support and education opportunities for those countries embarking on nuclear power generation without prior experience.

Regional progress and concerns

Electricity consumption forecasts, by region

North America

The nuclear lead region rests its case

- Extended operation of existing units, postponed time of retirement of the now operating 99 units, with a low number (5) of new units, and no new units in Canada or Mexico.
- Natural shale-gas, with its competitive advantages, has taken the lead as new power source.
- No fuel cycle activities and no established radioactive waste management plan.
- Very significant level of technical support, part of which may be made available to other countries.

Challenges

Sets the rules for technology use.

Europe and Russian Federation

The mixed picture region, with;

- Technology providers; RF (presently) surfacing as the main technology-provider; having addressed financing and waste management.
- Newcomers (Belarus) and new units in several countries
- Antinuclear countries, also those phasing out nuclear energy due to post-Fukushima reasons.

- No EU-wide position on nuclear power, but strong emphasis on safety, security and emergency response.
- EU regulations and directive on safety and waste management.
- Significant resources available for capacity building, utilized mixedmode, often in an ad-hoc manner.

Middle East and Central Asia

The region that led the way for new nuclear power

- A region with growing nuclear power but without indigenous technology.
- Remains of the nuclear programme of the former Soviet Union.
- UAE, Jordan, Saudi-Arabia, Turkey, Egypt, others?
- Countries are adding new units, e.g. Armenia, Iran, UAE.
- Lead producers for source uranium, host of the fuel bank (Kazakhstan) and multinational enrichment services (Angarsk).

- Significant new programmes in nuclear un-experienced countries.
- Existing standards suitable for countries that buy a capacity to produce electricity.
- No/insufficient establishments for capacity building to support nuclear power implementation.
- The region presents non-proliferation issues.
- Political instability and conflicts.

East and South Asia

The new nuclear lead region

- The region in which nuclear power grows significantly, lead by China and India.
- Significant R&D of nuclear technology.
- Vietnam, Indonesia and Malaysia, examples of "advanced" new nuclear power countries, with research experience.

- Several "un-experienced" countries, planning to introduce nuclear power, example Bangladesh.
- Significant resources invested in technical support and human resource development.
- Non-proliferation concerns; DPRK, non-NPT countries.
- Political conflicts.

Potentially an emerging nuclear power region

- Nuclear power in one country, only.
- Nuclear interest in Nigeria, Egypt etc.
- Emerging major source uranium producer

- Very limited experience within the nuclear field, basically mainly South Africa.
- No/insufficient technical support capacity.
- Political instability.