Global Nexus Initiative

Reactor Technology Development Challenges SESSION II

Christofer Mowry 23 February 2015

Advanced Nuclear Power: What problem is being solved?

Framing the discussion

- Geo-political relevance
 - Carbon and Climate ... or ... Security and Non-proliferation
 - Stakeholders and their timeframes
- Gen III+ LWR designs are "safe enough"
 - The meaning of CDF = 10^{-8}
- Economics in the global energy industry
- Affordability and Competitiveness
 - The role of subsidies
- Risk management
 - Promise versus Proven
 - History of economies of scale and modularization
- Fuel cycle efficiency and nuclear waste
 - Stakeholder versus Customer issues

A nuclear power "product" that <u>Customers</u> want, when they need it

Nuclear Power Development: Search for Competitiveness

Gen IV SMR Value Proposition

- Size Optimization
 - Affordability
 - Flexibility
- Standardization
 - Fleet O&M economics
 - Rapid shift to NOAK construction

... AND

- Inherent safety
 - Nuclear island simplicity
 - Limited engineered safety features
 - Mechanistic "Severe Accidents"

Advanced Nuclear Energy may deliver an Affordable and Competitive product

Nuclear Power Development: Maturity Landscape

Focus on most mature, lowest risk designs can enable Customer relevance

Advanced Nuclear Energy Development: Real Timeline

Phase	Time	Cost	Mortality
Modeling	3 years	\$100M	32 ideas
Testing	5 years	\$200M	16 concepts
Demonstrating	4 years	\$300M	8 technologies
Deploying	8 years	\$500M	4 products
TOTAL	20 years	>\$1B	

Comments

- Innovators not looking "down the road" ... reality of cost and time commitments
- Licensing risk-reduction pushed to back-end ... not aligned with investment timing
- Deregulated and developing markets averse to FOAK costs and risks ... not first movers
- A few Gen IV designs more mature than Gen III+ SMRs ... lower risk, less time

Integrated timeline, cost, and risk underestimated by many stakeholders

Development History: Schedule & Cost Performance

<u>Domestic</u>: Most recent U.S. experience is 31 years and counting ...

- Westinghouse AP-1000
 - Began life as AP-600 in 1985
 - Attempted to grow out of LCOE problems with shift to AP-1000
 - Final NRC Design Certification amendment issued after 19 revisions to the design
- The uncertain legacy of NP-2010 and the Energy Policy Act of 2005
 - 50/50 cost-sharing program through design certification, with some FOAK risk reduction and PTC
 - GE's ESBWR was never built
 - Westinghouse sold to BNFL in 1999, then to Toshiba in 2006, then tech transfer deal with SNPTC

International: Olkiluoto-3 EPC construction planned for 5 years, now 14 years+

- Variations in licensing requirements, redesign, and component/construction quality issues
- Cost estimate increased by almost a factor of 3 from €3B to €8.5B

Recent nuclear development schedule and cost performance unsustainable ... after all this effort, there is no firm backlog of new orders for these designs

Nuclear Power Development: Timeline "lessons learned"

- 1. NP-2010 cost-sharing ended after licensing, with 50% of development cost remaining
- 2. Limited backlog of customer orders drives focus on FOAK cost minimization, short-view
- 3. Financial pressures drive reactor designers and EPC partners to start construction early
- 4. Designs not "shovel-ready" when construction begins, causing delays, rework
- 5. Supply chain not ready due to late engineering and planning
- 6. Deployment of new GW-class reactors treated as projects, not products
 - Limited standardization
 - Local content and workforce
- 7. Government involvement in many global procurement processes biases EPC decisions

Root-cause of deployment cost overruns and missed schedules lie in development

Nuclear Power Development: Private Sector Role

Private sector capital can help bring innovation and a sense of urgency, but ...

- Many large fully-public industrial firms not significantly engaged in advanced nuclear
 - GE, Westinghouse, B&W, Siemens, Rolls-Royce, Toshiba, Mitsubishi, Hitachi, etc.
 - Legacy challenges and experiences with GW-class technology development programs
- Most claimed \$1.6B in "new" private capital investment is skewed to a few programs
 - Bill Gates' TerraPower "Black Swan" ... 20 year+ planning horizon
 - Gen III+ SMRs ... still waiting for the first firm Customer order
- Many venture capital-backed early stage startup companies "plan" early exit
- Private sector investment demands significant change to "business-as-usual"
 - Utility-scale technologies which are economically competitive
 - 10 year development-to-deployment timeline
 - U.S. NRC regulatory reform that enables step-wise licensing with step-wise investment
 - Harmonization of global nuclear regulations to support design certification standardization
 Exponential increase in market demand or subsidies to offset development costs

Entrepreneurs can unlock Gen IV's potential ... with a major landscape shift

Nuclear Power Development: Public-Private Partnerships

Fully or partially nationalized deployment partnerships:

- China largest new-build program in the world, full spectrum of technologies
- Russia robust nuclear industry, in spite of severe domestic economic turmoil
- France continued slow new-build, development and deployment of EPR
- => Investments immune to free-market economics, implementing national energy policies

Regulated or quasi-regulated utilities

- TVA, Southern Company and SCANA only new-build programs in U.S.
- => Regulated return on investment, CWIP

Deregulated energy markets

- UK No new build construction after more than a decade of policy incentives
- US No new build projects underway
- => No comprehensive public-private partnership addressing full market realities

Global new build only progressing where public financing overcomes challenges

Partnerships for Gen IV: A Notional Path Forward

4				
	Modeling and Simulation	Component & Fuel Testing	Demonstration and Prototyping	FOAK Deployment
Government Role	Analysis platform	50/50 Cost share"Test bed"Technical support	• EPC risk	 50/50 Cost share EPC risk PPA Host site State-of-art enhancements
Private Investor Role	50/50 Cost shareInnovationDesign	50/50 Cost shareDesignComponentsFuel	 50/50 Cost share Technology EPC cost Licensing Fuel 	 50/50 Cost share EPC cost Supply chain O&M infrastructure Fuel supply NOAK back-log
	32 x \$100M	16 x \$200M	8 x \$300M	4 x \$500M

Reactor Technology Development Challenges: Conclusions

- Advanced nuclear technology offers promise of products that customers want
- Some Gen IV design ready for deployment by mid-2020's ... geo-politically relevant
- 20 year+ development timelines and \$1B+ investments are a major challenge
- Too much pressure on private sector results in undesirable deployment outcomes
- Significant new private sector investment will require industry landscape shifts
- Public-private partnerships necessary in deregulated, non-nationalized markets
- Full-scale Gen IV program is notionally \$10B, and delivers FOAK by mid 2020's

Nuclear development and deployment challenges are solvable ... by 2020's